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Abstract

The Wnt signaling pathway plays a crucial role in neurodevelopment and in regulating the function and structure of
the adult nervous system. Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental disorders with evidence of
subtle neurodevelopmental, structural and functional neuronal abnormalities. We aimed to elucidate the role of
aberrant regulation of the Wnt system in these disorders by evaluating plasma levels of secreted Wnt modulators in
patients (SCZ =551 and BD = 246) and healthy controls (HCs = 639) using enzyme immune-assay. We also
investigated the expression of 141 Wnt-related genes in whole blood in a subsample (SCZ = 338, BD = 241, and HCs
= 263) using microarray analysis. Both SCZ and BD had dysregulated mRNA expression of Wnt-related genes favoring
attenuated canonical (beta-catenin-dependent) signaling, and there were also indices of enhanced non-canonical Wnt
signaling. In particular, FZD7, which may activate all Wnt pathways, but favors non-canonical signaling, and NFATc3, a
downstream transcription factor and readout of the non-canonical Wnt/Ca>™ pathway, were significantly increased in
SCZand BD (p <3 X 10™Y. Furthermore, patients had lower plasma levels of soluble dickkopf 1 and sclerostin (p < 0.01)
compared with HC. Our findings suggest that SCZ and BD are characterized by abnormal Wnt gene expression and
plasma protein levels, and we propose that drugs targeting the Wnt pathway may have a role in the treatment of
severe mental disorders.

Introduction

Schizophrenia (SCZ) and bipolar disorder (BD) are
severe mental illnesses that are leading causes of world-
wide disability* and are associated with shortened life-
span®~°. Early brain morphological findings (i.e., aberrant
neural lamination and orientation in the hippocampi),
behavioral and cognitive alterations, and nonspecific
motor development abnormalities in SCZ were among the
first observations that underpinned the neurodevelop-
mental hypothesis of SCZ®. In BD, subtle brain morpho-
logical changes, behavioral alterations prior to onset of
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illness, and attenuations in neurogenesis may indicate
disrupted neurodevelopment7. Further, in the adult brain,
structural alterations, aberrant brain connectivity, and
biochemical changes suggest patterns of subtle structural
and functional brain abnormalities in both illnesses®’. In
addition, some studies have also indicated signs of neu-
rodegenerative processes in SCZ'®, with weaker evidence
in BD''.

During neurodevelopment and in the adult brain the
Wnt signaling pathway plays a crucial role in neural stem
cell proliferation, differentiation and migration, neuro-
plasticity, and neurogenesis'>'>. Secreted modulators
such as the dickkopf (DKKs) and the secreted frizzled
related proteins (SFRPs) regulate both the canonical (B-
catenin-dependent) and non-canonical (-catenin-inde-
pendent) Wnt signaling, modulating the effects of various
Wnt ligands'®. Initial studies investigating the Wnt
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signaling pathway in severe mental disorders almost two
decades ago focused on the hippocampus, where immu-
noreactivity of the Wnt ligand Wnt-1 was observed'®.
Aberrant findings in SCZ included reduced B-catenin'®,
increased Wnt-1 expression'’, and reduced glycogen
synthase kinase 3 beta (GSK-3p), a multifaceted kinase in
Wnt signaling'”. Later, large genome-wide association
studies identified several polymorphisms in Wnt signaling
in SCZ and BD suggesting a strong genetic component'®,
In particular, secreted Wnt antagonists, such as DKK4'?,
sFRP1, and FZD3?*2?!, have been associated with brain
volumes®” and increased susceptibility to SCZ. In addi-
tion, these Wnt antagonists are located in the chromo-
somal region 8p, which is a genetically implicated region
in neuropsychiatric disorders'®. Furthermore, down-
stream modulators of B-catenin-dependent signaling have
also been linked to increased susceptibility to both
SCZ>*** and BD, as well as suicidal behavior*> and body
composition®®. The Wnt signaling pathway is also linked
to BD through investigations identifying that lithium
impairs GSK-3p expression®’. Although alterations in the
Wnt signaling pathway have been evident for the past
couple of decades a thorough understanding is still lack-
ing. In particular, whereas most studies on the potential
involvement of Wnt signaling in severe mental disorders
have focused the canonical pathway, few studies has
investigated the role of the non-canonical pathways that
may be equally relevant in the pathogenesis of psychiatric
disorders'*. Furthermore, no studies have investigated
serum levels of central secreted Wnt antagonists such as
DKKs or frizzled related proteins.

In the present study we aimed to further elucidate the
aberrations in the Wnt signaling pathway by conducting a
pathway analysis on leukocyte mRNA in a large sample of
SCZ and BD patients, and healthy controls (HCs) to
identify differentially expressed genes as well as compar-
ing circulating levels of secreted Wnt agonists and
antagonists. We also aimed to explore associations
between the Wnt signaling pathway and the use of
medication.

Subjects and methods
Study design and ethics

The TOP Study at the NORMENT Centre, Oslo Uni-
versity Hospital, and collaborating Norwegian hospitals*®
is approved by the Regional Committee for Medical
Research Ethics and the Norwegian Data Inspectorate.
The biobank is approved by the Norwegian Directorate of
Health. All participants provided written informed con-
sent after receiving a complete description of the study.

Participants
The main inclusion criteria were having a Diagnostic
and Statistical Manual of Mental Disorders-IV (DSM-1V)
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diagnosis of SCZ spectrum disorders or bipolar spectrum
disorders, intelligence quotient > 70, and age between 18
and 65 years (for details see ref. >*). Healthy volunteers
without any history of severe psychiatric disorders (or in
any of their first-degree relatives) or substance/alcohol
abuse/dependency from the same catchment area were
randomly selected from the National Population Registry
(www.ssb.no). For the present analyses, patients and
controls were not included if they had coexisting auto-
immune or inflammatory disease, cancer, ongoing infec-
tions, used anti-inflammatory drugs, or had C-reactive
protein levels above 20 mg/L. In total, 1625 participants
included in the study had available plasma for protein
assessment. Of these, 1436 participants (551 SCZ, 246 BD,
and 639 HCs) met criteria for inclusion. A subsample of
patients and controls (338 SCZ, 241 BD, and 263 HC
participants) had available blood samples and passed
quality control for microarray analyses.

Clinical assessments

Diagnosis was obtained using the Structured Clinical
Interview for DSM-IV Axis I Disorders®. Clinical symp-
toms were evaluated using the Young Mania Rating
Scale®, Inventory of Depressive Symptoms®', and Positive
and Negative Syndrome Scale®’, while functioning was
measured using the Global Assessment of Functioning
split version function and symptom scale®’. The clinical
assessment team consisted of psychologists and physi-
cians who were all trained until satisfactory inter-rater
reliability was obtained®*. The use of psychotropic and
other medication was also recorded at the time of inclu-
sion. This was based on patient interview and medical
records. On the day of blood sampling, the medication list
was reconfirmed by asking patients about medication
adherence (for details see ref. 3°), and we also measured
serum levels of medication from the same blood sample
that was used for gene expression and protein level
analyses.

Plasma protein assessment

We have previously described the blood sampling
method®®. We selected stabile plasma ligands that circu-
late at a detectable level: DKK1; DKK3; sclerostin (SOST),
R-spondin-3 (RSPO3) and sFRP3. We measured their
plasma levels in duplicate using commercially available
antibodies (R&D Systems, Abingdon, UK) in a 384 format
using a combination of a SELMA (Jena, Germany)
pipetting robot and a BioTek (Winooski, VT, USA) dis-
penser/washer. For details see supplementary text 1.

RNA extraction

Blood samples were collected using Tempus Blood RNA
Tubes. Total RNA was extracted with ABI PRISM 6100
Nucleic Acid PrepStation and TEMPUS 12-port RNA
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Isolation Kit according to the manufacturer’s protocol.
High-Capacity cDNA Reverse Transcription Kit was used
for reverse transcription of 1 ug RNA.

Global transcriptomics analyses

We selected 141 Wnt pathway-related genes using the
Kyoto Encyclopedia of Genes and Genomes database
(http://www.genome.jp/kegg/pathway.html). For each
sample, 200ng of total RNA was biotin-labeled and
amplified using the Illumina TotalPrep-96 RNA Ampli-
fication Kit (Thermo Fisher, Waltham, MA, USA). Global
analysis of gene expression was performed with Illumina
HumanHT-12 v4 Bead Chip (Illumina, San Diego, CA,
USA) consisting of more than 47 000 probes (ie., tran-
scripts). For this purpose, 842 samples (263 HCs, 338
SCZ, and 241 BD) passed labeling and scanning. Raw
microarray scan files were exported using the Illumina
GenomeStudio software and loaded into R for down-
stream analysis using specific packages provided by Bio-
Conductor®. Lumi was used to detect outliers®®, R
package (version 3.24.4.) was used to correct for technical
batch effects, like RNA extraction batch, RNA extraction
method, DNase treatment batch, cRNA labeling batch,
and chip hybridization. Further quality control, quantile-
normalization, and log2-transformation were done using
Limma®’.

Statistical analysis

Statistical analyses were performed using the SPSS
software package for Windows, version 24.0 for plasma
analyses. Data normality was assessed using the
Kolmogorov—Smirnov and Shapiro—-Wilk tests. We
investigated differences in demographic data between
groups using the chi-square test for categorical variables,
the Kruskal-Wallis test for continuous variables, and the
Mann—Whitney U-test for post hoc analyses. We used T-
tests for normally distributed variables, and non-
parametric tests (Mann—Whitney U-test) for skewed
distributions to investigate differences between groups.
Correlations were examined by using Spearman’s rank
correlation. We controlled for age and sex in linear
regression models.

To find associations between expression and the diag-
nostic group, a linear model was fitted in the R software
environment using age, sex, and the expression level of
Bmall as covariates. Bmall was included in the analyses
to adjust for differences in time of blood sampling and
circadian rhythm between patients and controls.

To explore possible associations between medication
and the Wnt pathway we first calculated the defined daily
dose of psychotropic medications (antipsychotics, mood
stabilizers, and antidepressants) according to the guide-
lines from the World Health Organization Collaborating
Center for Drug Statistics Methodology (https://www.
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whocc.no/atcdd). The defined daily dose is the assumed
average maintenance dose per day for a drug used for its
main indication in adults. We used serum concentration
levels for lithium instead of defined daily dose. We
selected significantly regulated Wnt antagonists in plasma
(i.e., DKK1 and SOST) or major upstream or downstream
differentially expressed genes (i.e., FZD7 or NFATc3).
Associations were explored using analysis of covariance
where we controlled for age, sex, and other medication
groups, and we also investigated whether medication
groups would influence these Wnt members (group
effects; Supplementary table 2).

We corrected for multiple testing according to the
Bonferroni method and alpha was set at p <3 x 10~ * for
our mRNA analyses differentially expressed genes
(investigating 141 genes) and p <0.01 for plasma ligand
analyses (adjusting for 5 tests).

Tissue expression

In addition, we evaluated the tissue expression of FZD7
using the publically available Genotype-Tissue Expression
(GTEx) dataset. The GTEx Project was supported by the
Common Fund of the Office of the Director of the
National Institutes of Health, and by NCI, NHGRI,
NHLBI, NIDA, NIMH, and NINDS. The data used for the
analyses described in this manuscript were obtained from
[https://gtexportal.org/home/gene/FZD7] the GTEx Por-
tal on 06/25/2017 and/or dbGaP accession number
phs000424.vN.pN on 06/25/2017. NFATC3 protein
expression in the brain was evaluated using The Human
Protein Atlas (www.proteinatlas.org)4o.

Results
Demographics and clinical characteristics

The socio-demographic and clinical characteristics of
the participants are presented in Table 1. There were
significant differences in ethnicity (more Caucasians in
the HC group), sex (more males in the SCZ and HC group
compared to BD), and age (BD and HC older than SCZ)
between the patient groups and HCs. These differences
were similar in the plasma (7 =1436) and the leukocyte
(n = 842) cohorts. Patients with SCZ had higher symptom
load and lower functioning than BD.

Plasma levels of Wnt modulators

The plasma levels of Wnt ligands in absolute values and
group comparisons are summarized in Table 2a. Com-
pared with HCs, patients had significantly lower levels of
the Wnt antagonist DKK1 (p < 0.01) and SOST (p < 0.01
for SCZ and BD), also significant in adjusted analyses (i.e.,
age and sex). In the SCZ group, the levels of the Wnt
antagonist SFRP3 were nominally decreased compared to
HC (p =0.04), with no significant differences in plasma
ligand levels between SCZ and BD. As for the Wnt agonist
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Table 1 Demographic and clinical characteristics of participants
Parameters Plasma (Wnt ligand) cohort Leukocyte (mRNA) cohort

SCZ(N=  BD(N=  HC(N=  Post hoc SCZ(N=  BD(N=  HC(N=  Post hoc

551) 246) 639) analysis 338) 241) 263) analysis
Male sex, N (%) 334 (60.6) 97 (394) 364 (57.0) SCZ>HC>BD 206 (60.9) 94 (39.0) 144 (54.8) SCZ>HC>BD
Ethnicity (Cauc. %) 444 (80.6) 213 (86.6) 629 (98.4) HC>BD > SCZ 165 (90.7) 141 (94.6) 208 (100) HC>BD > SCZ
Medication
Antipsychotics 510 (84.6) 167 (66.0) — SCZ>BD 172 (94.5) 115 (77.2) — SCZ>BD
Lithium 12 (2.0) 51 (20.2) — BD > SCZ 3(1.2) 32 (21.6) — BD > SCZ
Antidepressants 179 (31.5) 95 (38.8) — BD > SCZ 51 (28.0) 58 (38.9) — BD > SCZ
Mood stabilizers 56 (9.3) 87 (344) — BD > SCZ 28 (154) 66 (44.3) — BD > SCZ
Age (years) 27 (13) 29 (18) 31 (13) BD, HC > SCZ 25(11) 36 (20) 360 (11) BD, HC > SCZ
DOI (years) 4 (8) 4 (10) — BD > SCZ 509 5(13) — NS
PANSS total score 62 (22) 44 (13) — SCZ >BD 64 (24) 45 (14) — SCZ>BD
YMRS total score 3(9 2 (5) — SCZ>BD 5(8) 2(7) — SCZ>BD
IDS total score 17 (19) 17 (16) — NS 19 (17) 15 (17) — NS
GAF-S 40 (15) 57 (16) — BD > SCZ 39 (10) 54 (17) — BD > SCZ
GAF-F 42 (14) 51 (19) — BD > SCZ 40 (11) 50 (17) — BD > SCZ

SCZ schizophrenia, BD bipolar disorder, HC healthy controls, Cauc. Caucasians, NS nonsignificant, DO/ duration of illness, PANSS Positive and Negative Syndrome Scale,
YMRS Young Mania Rating Scale, IDS Inventory of Depressive Symptoms, GAF-S Global Assessment of Functioning-Symptom Scale, GAF-F Global Assessment of

Functioning-Function Scale

Categorical data are given as percent in brackets, while continuous data are given as median with interquartile range. Post hoc analysis is performed using Pearson

chi-square for categorical data, and Mann-Whitney U-tests for continuous data

Table 2a Differences between patients and controls in Wnt pathway-related ligands

Plasma ligands M (IQR) SCZ vs. HC BD vs. HC SCZ vs. BD

SCz BD HC n z t n z t n z t
DKK1 1.63 (1.76) 153 (1.63) 1.99 (2.08) 1245  —4.08%*  —453%* 895 _437%** 856 054 0.81
DKK3 27.10 (9.01) 27.80 (8.80) 26.95 (9.02) 1240 —-064 —0.87 893 131 1.07 853 —169 —103
SFRP3 345 (2.34) 3.56 (2.64) 388 (2.53) 1245  —264**  —2.10* 895 —1.26 —0.71 856 —069 —1.23
SOST 134.11 (7539) 13097 (68.24) 14893 (7539) 1245 —4.13*** —386*** 895 —3.11** —267* 856 —0.13
RSPO3 709 (49.4) 769 (47.6) 764 (50.6) 1245  —251% —2.03* 895 —0.80 —0.87 856 —1.07 —-0.72

Results are given as z from Mann-Whitney U-test and t from ANCOVA (linear regression analysis) controlling for age and gender. Results are significant after

Bonferroni correction if p < 0.01, and nominally significant if 0.01 < p < 0.05

M median, IQR interquartile range, SCZ schizophrenia, BD bipolar disorder, HC healthy control, DKK1 dickkopf 1, DKK3 dickkopf 3, sSFRP3 secreted frizzled related protein

3, SOST sclerostin, RSPO3 R-spondin-3
*p <0.05; **p < 0.01; ***p < 0.0003

RSPO3, we found nominally significant lower levels in
SCZ, and no significant differences in BD compared to
HC.

Differently expressed genes in SCZ and BD

The expression of Wnt pathway genes in whole blood
are summarized in Figs. 1 and 2. Genes with significant
differential expression (p<3x 10~ %) are described in
Table 2b, and nominal significant findings (3 x 10~ *< p <

0.05) in Supplementary table 1. Effect size estimates
ranged between |0.03| and |0.15] in significant findings (p
<3x107%), and between |0.02| and [0.13] in trend level
findings (3 x 10~* < p < 0.05).

In general, gene expression in patients compared to
HCs was quite similar for SCZ and BD with more modest
changes in BD. For example, the Wnt receptor FZD7
expression was significantly increased in SCZ compared
to HC (p <3 x 10™*) with similar regression coefficients,
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Fig. 1 Differences in Wnt pathway gene expression between patients with schizophrenia spectrum disorder and healthy controls after
controlling for age, gender, and Bmal1. Results are given as p-values where significant results (p-values adjusted for multiple testing) are indicated
in red/dark blue (for increased/decreased mRNA expression) and nominally significant results (0.001 < p < 0.05) are shown as pink/light blue (for

increased/decreased mRNA expression). The figure summarizes relevant genes for the three Wnt pathways (i.e, canonical pathway, non-canonical
planar cell polarity pathway, and the non-canonical Wnt/Ca>" pathway). The figure is based on the Wnt signaling pathway in the KEGG database
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Fig. 2 Differences in Wnt pathway gene expression between patients with bipolar spectrum disorder and healthy controls after
controlling for age, gender, and Bmal1. Results are given as p-values where significant results (p-values adjusted for multiple testing) are indicated
in red/dark blue (for increased/decreased mRNA expression) and nominally significant results (0.001 < p < 0.05) are shown as pink/light blue (for
increased/decreased mRNA expression). The figure summarizes relevant genes for the three Wnt pathways (i.e, canonical pathway, non-canonical
planar cell polarity pathway, and the non-canonical Wnt/Ca>* pathway). The figure is based on the Wnt signaling pathway in the KEGG database
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Table 2b Significant differences between patients and controls in Wnt signaling pathway gene mRNA expression after
controlling for age and gender in linear models, and correction for multiple testing

Gene Protein names Specificity SCZ vs. HC BD vs. HC SCZ vs. BD
B B B
Wnt canonical pathway PSENT Presenilin-1 ++ —0.03****  —002*** 001
FZD7 Frizzled-7 ++ 0.07%x** 0.07*** 0.00
B-catenin destruction complex
FRAT2 GSK-3-binding protein FRAT2 +++ —0.13%** 0117 0.02
CSNK2A2  Casein kinase II subunit alpha ++ —0.05%** —0.05***  —0.01
CSNK2B  Casein kinase Il subunit beta ++ 0.07%%%x 0.06%*** —0.02
B-catenin degradation complex
CACYBP  Calcyclin-binding protein isoform 2 +++ —0.09%***  —0.06** 0.03
FBXW11  F-box/WD repeat-containing protein 11 ++ —0.04%**  —0.02* 0.02
cuLt Cullin-1 ++ —-0.02 —0.06****  0.05**
RBX1 E3 ubiquitin-protein ligase RBX1 ++ 0.06* 0.73%x%xx —0.07*
B-catenin nuclear regulation
CHD8 Chromodomain-helicase-DNA-binding protein 8 +++ 0.13%xxx 0.09%** —0.04
CREBBP ~ CREB-binding protein + —0.10%**  —0.09**** 001
SMAD4  Mothers against decapentaplegic homolog 4 + —0.09%***  —0.06"**  —0.03*
CTBP1 C-terminal binding protein 1 ++ —0.03****  —00]1 —0.02%
MAP3K7  Mitogen-activated protein kinase kinase kinase 7 + —0.03***  —0.03** 0.01
Transcription targets
JUN Transcription factor AP-1 + —0.10%*** —0.10%***  0.00
CCND3  G1/S-specific cyclin-D3 + 0.1 7% 0.07** 0.04
Wnt non-canonical PCP RAC2 Ras-related C3 botulinum toxin substrate 2 + —0.07*%%  —0.05** 0.03
pathway
Wnt non-canonical Ca**  CAMK2A  Calcium/calmodulin-dependent protein kinase type |l + 0.06%*** 0.02 0.04**
pathway subunit alpha
CAMK2G  Calcium/calmodulin-dependent protein kinase type |l + 0.01 0.077%* — Q5%
subunit gamma
PPP3R1  Calcineurin subunit B type 1 + 0.15%%* 0.10%* 0.05
PPP3CA  Serine/threonine-protein phosphatase 2B catalytic + —0.02 —0.07%***  0,04**
subunit alpha isoform
PPP3CC  Serine/threonine-protein phosphatase 2B catalytic + —0.06****  —0.03 —0.03
subunit gamma isoform
PRKCB Protein kinase C beta type + —0.17%¥**  _008****  —003
NFATC3  Nuclear factor of activated T cells, cytoplasmic 3 + 0.04%*** 0.04%*** 0.00

Gene names are listed according to the HUGO Gene Nomenclature Committee and preferred protein names are given in brackets.
Results are given as effect size estimates from the linear regression analysis after correction for age, sex and BMAL1 expression. Results are significant after Bonferroni

correction if p<3x107% and nominally significant if 3 x 107 < p < 0.05.
SCZ schizophrenia, BD bipolar disorder, HC healthy control, B unstandardized regression coefficient
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 3x10™*
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but trend level changes in BD (p < 0.001). No other friz-
zled receptors or Wnt ligands were significantly regulated
in our patient population.

Differently expressed genes involved in canonical Wnt
signaling

The gamma secretase complex protein PSEN1 was
decreased in SCZ compared to HC with a similar trend
level decrease in BD. Other differentially expressed genes
in the canonical pathway included several members of the
[-catenin destruction complex (FRAT2 decreased in SCZ,
CSNK2A2 decreased in BD, and CSNK2B increased in
both), degradation complex (CACYBP and FBXWII
decreased in SCZ, and CUL decreased and RBXI
increased in BD), and nuclear regulation of (-catenin
(CHDS increased in SCZ, CTBP1 and MAP3K7 decreased
in SCZ, and CREBBP and SMAD4 decreased in both). In
addition, the transcriptional target JUN was decreased in
SCZ and BD while CCND3 was increased in SCZ. The
only significant differentially expressed genes between
SCZ and BD were increased ICAT and decreased
CAMK2G mRNA expression in SCZ (Table 2b, Supple-
mentary Figure 1).

Differently expressed genes involved in non-canonical Wnt
signaling in whole blood

The only gene involved in the non-canonical planar cell
polarity pathway that was differently expressed was
decreased RAC2 in SCZ compared to HC (Table 2b). For
the non-canonical Wnt/Ca*" pathway, a complex
expression pattern was observed for genes involved in
calcium-dependent cell signaling. First, one of the major
isoforms of CaM kinase, CAMKZ2A, and PPP3RI,
belonging to the regulatory subunit of calcineurin (CaN)
were increased in SCZ, and CAMK2G in BD. Second,
isozymes belonging to the catalytic subunit of CaN and
protein kinase C (PKC) were downregulated (PPP3CA
decreased in BD, PPP3CC decreased in SCZ, and PPP3CB
and PRKCB decreased in both). Finally, NFAT3C was
increased in both SCZ and BD.

Evaluation of tissue expression of FZD7 and NFATC3 from
public databases

Our findings so far suggest that upregulation of the Wnt
receptor FZD7 and NFAT3C, an important transcriptional
factor of the non-canonical Wnt signaling pathway, may
be major characteristics of SCZ and BD. To further elu-
cidate these issues, we investigated tissue expression of
these proteins in human brain based on available data-
bases. Evaluation of tissue expression of FZD7 using the
GTEx portal revealed the highest expression of FZD7 in
the cerebellum compared to other tissues (Supplementary
Figure 2). Protein expression data for NFATC3 in the
brain are available from the Human Protein Atlas and
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show medium to high expression in all cell types in the
hippocampus, cerebral cortex, caudate, and cerebellum
(Supplementary Figure 3).

Role of medication

We found a positive association between defined daily
dose of antipsychotics and plasma levels of DKK1 (5=
0.13, p < 0.01; Supplementary table 2). However, patients
using antipsychotics did not have higher levels of DKK1
compared to patients not using antipsychotics. Patients
using antidepressants (n =249) had significantly lower
levels of SOST (t=—2.91, p<0.01) and increased FZD7
expression (t =2.21, p < 0.05).

Discussion

We show for the first time in a large sample that the
mRNA expression of FZD7 and NFATC3, two highly
relevant Wnt signaling pathway genes, is significantly
increased in patients with severe mental disorders com-
pared to HCs. In addition, our pathway analyses indicate
attenuated Wnt canonical pathway in patients vs. con-
trols. Our study is also the first to investigate serum levels
of secreted Wnt modulators in SCZ and BD, demon-
strating significantly aberrant levels of DKK1 and SOST.

Interpretation of differentially expressed genes from
signaling pathways is challenging since most intracellular
components are not exclusive, but shared by multiple
pathways and possibly more dependent on phosphoryla-
tion status than transcription levels. They may however
aid in identifying dysregulated elements of a pathway that
can be evaluated in detail in following studies. A major
finding of our study was increased FZD7 mRNA levels in
SCZ, and to a lesser degree in BD compared to controls.
Among the frizzled receptors, FZD7 is unique as it can
activate all Wnt pathways with non-canonical signaling
being predominant*' and also oligomerize with all other
FZD receptors and further modulate Wnt signaling®.
Typical non-canonical Wnt ligands such as WNT5A and
WNT11 bind FZD7 and activate the planar cell polar-
ity*>** or the Ca®>" pathway*>**, shown to be involved in
SCZ*. Although data on FZD7 signaling in neural tissues
is sparse, FZD7 mRNA is detected in multiple regions in
the brain with heavily enriched expression in the cere-
bellum, which is affected in SCZ*. If the dysregulated
FZD7 signaling is also present in the neural tissues of
patients with psychotic disorders, the promiscuity of
FZD?7 with regard to interactions with other receptors and
multiple Wnt pathways make it an appealing candidate
for further studies.

Our second major finding regarding gene expression
was increased NFATC3 mRNA expression in patients.
NFATC3 codes the NFAT4 protein, and data from the
Human Protein Atlas shows that NFAT4 protein is
strongly expressed in brain tissue. Importantly, a recent
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genome-wide association study identified NFAT4 as a
susceptibility gene in SCZ*®. In addition to its role in
inflammation and activation of immune cells, which is
highly relevant in SCZ and BD, NFAT activation may
participate in neuronal apoptosis in the CNS*. Specifi-
cally, NFAT4 activation has been implicated in neuronal
loss in the hippocampus after brain injury®’, is induced in
astroglia®® and may promote inflammatory responses.
Wu et al.”%, using an approach similar to ours, recently
reported a downregulation of NFATC3 in a substantially
smaller SCZ population. This discrepancy could be rela-
ted to cellular composition as Wu et al. studied peripheral
blood mononuclear cells while our samples contain all
leukocyte populations, including a large proportion of
neutrophils (~70%), and NFAT is an important inducer of
inflammatory responses in neutrophils®*. Non-canonical
Whnt ligands can trigger the Wnt/Ca®" pathway leading to
activation of calcium-sensitive enzymes, including CaN,
Ca*"/calmodulin-regulated kinase II, and PKC, which
may activate NFAT signaling®®>. We and others have
demonstrated that non-canonical WNT5A stimulation
enhanced NFAT activity”®”’. Based on the complex
expression pattern of CaN and PKC transcripts, but
increased CAMK2 in SCZ and BD, it is tempting to
hypothesize that CAMK2 could activate NFAT as has
been demonstrated in lymphocytes®®°°. Regardless of the
mechanisms for upregulation, enhanced NFAT4 activity
in the brain and/or immune cells could potentially induce
neuro-inflammatory responses in SCZ and BD. Of rele-
vance, both NFAT®® and CAMK2°®' may antagonize the
canonical pathway.

In support of a previous study’® we found evidence of
attenuated canonical Wnt signaling in SCZ and BD. This
is suggested by decreased mRNA levels of members
belonging to the B-catenin destruction complex (ie.,
CSNK2A2 and FRAT?2), essential for Wnt/B-catenin sig-
naling®>®®. Aberrant CK2 signaling in the cortex has been
linked to altered neurotransmitter release in SCZ®*.
Decreased PSEN1 would favor enhanced canonical Wnt
signaling, but may also have multiple functions outside of
the y-secretase complex. In addition, regulated levels of
components involved in p-53-mediated degradation of B-
catenin (e.g., the CACYBP, 5-TrCP, CULI, and RBXI)
could reflect altered turnover of B-catenin, but are diffi-
cult to interpret as multiple non-Wnt substrates are
processed by this complex. We identified several differ-
entially expressed genes involved in nuclear transport and
regulation of B-catenin, such as increased CHDS, a
nuclear protein that inhibits B-catenin signaling®, and
decreased MAP3K7. MAP3K7 is also known as TAKI,
and studies in TAK™ mice reveal that low levels may
adversely affect cerebellar development and neuro-
developmentally regulated behavior®. Decreased expres-
sion of transcriptional co-activators of canonical Wnt
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target genes such as CtBPI (both co-repressor and co-
activator), CREBBP, a protein linked to SCZ suscept-
ibility®’, and the transforming growth factor transcription
factor SMAD4 are also compatible with attenuated
canonical signaling. These finding are supported by
decreased expression of the Wnt target gene JUN, which
may further reinforce Wnt signaling®® and increased
CCND3, which in contrast to cyclin D1/D2, is increased
in response to inhibition of canonical Wnt signaling®””°.

Interpretation of signaling networks in cross-sectional
studies is further complicated by that changes in expres-
sion may reflect compensatory feedback mechanisms in
response to dysregulated signaling. Multiple families of
secreted antagonists or modulators may regulate Wnt
signaling”’ and the decreased circulating levels of DKKI,
an antagonist of the canonical Wnt pathway, observed in
SCZ and BD could reflect a downregulation of DKK1in an
attempt to enhance canonical Wnt signaling. In an ana-
logous fashion, we have shown WNT5A stimulates the
release of sFRP3, which antagonizes WNT5A-induced
NFAT and ERK activity”””%. Alternatively, DKK1 may
reflect decreased activity in the Wnt canonical pathway as
DKK1 is directly regulated by the p-catenin/TCF complex
under physiological circumstances’®. Low serum levels of
DKK1 have been associated with increased risk of somatic
diseases, and to predict increased mortality in older
patients’*. SOST is also a potent inhibitor of the Wnt
canonical pathway’”, and low circulating levels are fre-
quently seen in relation to enhanced calcification”®, which
is relevant as calcification of the choroid plexus has been
associated with regional brain atrophies and neurode-
generative phenotype in SCZ and BD”’. Serum levels of
SOST have not been investigated in severe mental dis-
orders, but are inversely correlated with vitamin D
levels’®, and low vitamin D associates with symptoms in
severe mental disorders’’.

We investigated whether our findings may be attributed
to the use of medication. Due to the naturalistic nature of
our study most patients were using a combination of
psychotropic medication. We detected a significant
dosage-dependent association between antipsychotics and
DKK1, however we found no group effects of anti-
psychotics. SOST levels were lower in the group using
antidepressants, which is compatible with an activation in
canonical Wnt signaling®°.

Our study has some limitations that should be con-
sidered. First, we did not measure phosphorylation status
or protein levels of intracellular components of the Wnt
pathways, thus our conclusions rely on gene expression
data and plasma protein levels. Second, although a post
hoc power evaluation revealed an observed power above
090 for most transcripts and circulating proteins,
observed power was low (below 0.60), for several low-
abundant transcripts. Third, many patients were using a
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combination of psychotropic medications, which made it
impossible to investigate effects of medication in mono-
therapy. We did, however, control for co-medication in
the statistical analyses. Lastly, the cross-sectional design of
the study hinders us from making strong claims about
causality.

In summary, we provide further evidence of altered Wnt
signaling in SCZ and BD in a well-powered sample. In
particular, we show that NFATC3 and FZD7 mRNA
expression is increased in peripheral blood of patients,
while they have lower serum levels of DKK1 and SOST
compared to HCs. Our findings could suggest that drugs
blocking the non-canonical Wnt Ca pathway (e.g.,
WNT5A antagonists) could have a role in the treatment of
severe mental disorders and warrants further investigation.
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